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Abstract
We derive an expression for the mean first passage time (MFPT) for the random
walk with random step size on a one-dimensional linear lattice. Here both ends
of the linear lattice are reflecting boundaries whereas the absorbing boundary is
situated anywhere in between. When the size of the lattice is N and the random
step size is k, we show that the MFPT (

↔
T ) associated with the escape of the

random walker only through a specific point that is situated anywhere in the
interval [0, N ] at the limit as k → ∞ is limk→∞

↔
T a = N which is independent

of the initial position as well as the absorbing point associated with the random
walker on the linear lattice under consideration. This result has potential
applications in the analysis and understanding of the fundamental processes in
molecular biology such as DNA–protein and DNA–probe interactions.

PACS numbers: 05.40.Fb, 87.10.+e, 87.15.Aa, 87.14.Gg

1. Introduction

Finding a specific site on a DNA lattice in the presence of an enormous amount of non-specific
sites by a protein, another stretch of DNA or by a stretch of RNA is a fundamental phenomenon
in molecular biology [1–5]. Here the protein molecule first non-specifically binds to the DNA
lattice and then performs a one-dimensional search for the specific site by unbiased random
jumps with a jump size of k base pairs (bps) where the jump size k can be directly correlated
with the degree of super-coiling of the DNA lattice under consideration [6].

Let us consider a DNA lattice of N bps in length, containing the specific site at the lattice
position a such that 0 < a < N , where the set of lattice points {0, N} constitutes (these are
the helical ends) the reflecting boundaries and the lattice point x = a is the only absorbing
boundary (i.e. the specific site). Let us assume that the protein molecule was at the lattice
position x = x0 at time t = 0, and currently searching for the specific site by unbiased random
jumps with jump size k bps i.e. starting from a position x, in the next step the protein molecule
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can be found anywhere in the interval x ± k with equal probabilities (which is equal to 1
2k

in
the present context). Now the probability of finding the protein molecule on the DNA lattice
can be described by the following birth–death master equation:

∂tPx,t =
k∑

i=1

[Px−i,t + Px+i,t − 2Px,t ]. (1)

Here Px,t is the probability of finding the protein molecule at the position x at time t. The
Fokker–Plank equation (FPE) associated with the master equation (1) is simply given as
[7, 8] follows:

∂tPx,t = Dk

2
∂2
xPx,t , (2)

where Dk = 1
k

∑k
i=1 i2 = (k+1)(2k+1)

6 is the one-dimensional phenomenological diffusion
coefficient in the dimensionless form [6–8]. The mean first passage time (MFPT) (Tx)
associated with the escape of the protein molecule through the specific site a, can be easily
derived from [7–10] the backward FPE, i.e.

d2
xTx = − 2

Dk

. (3)

When the jump size k = 1 (therefore Dk = 1) the MFPTs can be derived as follows. If the
initial position x0 is such that 0 � x0 � a, the MFPT is given as TLR,x0 = a2 −x2

0 . If the initial
position x0 is such that a � x0 � N the MFPT is given as TRL,x0 = (

a2 − x2
0

)
+ 2N(x0 − a).

Here the reflecting boundary conditions are dxTx |x=0 = dxTx |x=N = 0 and the absorbing
boundary condition is Tx |x=a = 0 (see [7–10]). However, when k > 1, though the initial
position of the protein molecule on the DNA lattice is such that 0 � x0 < a, there is a definite
probability associated with the protein molecule to escape from the interval [0, a − 1] into the
interval [a + 1, N ] without actually getting absorbed at the lattice position x = a. Since we
have totally three boundary conditions, neither the master equation (1) nor the corresponding
MFPT equation (3) can be solved analytically. Nevertheless, such solutions are very much
useful in the analysis as well as in the understanding of the fundamental processes in molecular
biology such as DNA–protein interactions. In this paper, we derive a solution to this MFPT
problem.

2. MFPT from the interval [0, a − 1] only through the point x = a

Now let us consider only the interval [0, a − 1] and let us compute the MFPT associated with
the protein molecule to escape only through the point x = a. We consider M number of
trajectories starting from the position x = x0 where the initial position of the protein molecule
on the DNA lattice x0 is such that 0 � x0 � a. When the jump size is k = 1, then we should
note that all the M number of trajectories will pass through the absorbing point x = a and thus
get absorbed. However, when the jump size is k > 1 only a fraction of the trajectories will
pass through the point x = a before the protein molecule escapes into the region [a + 1, N ]
which can be computed as follows. Let us assume that the present position of the protein
molecule on the DNA lattice is x = a − 1. Now in the next step, the position of the protein
molecule can be anywhere in the interval (a − 1 − k) � x � (a − 1 + k). Here one should
note that among 2k number of such possible positions of the protein molecule, k number of
possibilities lie again in the interval [0, a − 1] that will not contribute to the MFPT. In the
remaining k number of possible positions, the probability associated with the protein molecule
to get absorbed at the position x = a is 1

k
, i.e. the number of possibilities of getting absorbed
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at the lattice position x = a is unity and k − 1 number of possibilities will be in the interval
[a + 1, a + k]. Since we insist the condition that the protein molecule should pass only through
the lattice point x = a, the trajectories which end in the interval [a + 1, a + k] have to travel
long routes before actually they come back and get absorbed at the lattice point at x = a.
For this reason, the time that is taken by the trajectories which hit at the interval [a + 1, a + k]
will simply add up to TLR,0, however, with appropriate weighting. In other words, among
M number of trajectories, M

k
number of trajectories will end at the position x = a (and get

absorbed) with a MFPT of TLR,0 = a2−x2
0

Dk
and M i

k
number of trajectories will end in the

interval [a + 1, a + i] with MFPTs of TLR,i = (a+i)2−x2
0

Dk
which is due to the fact that the jump

size i in turn includes all the possibilities of the jumps 1, 2, 3, . . . , i too. When we insist the
condition that the protein molecule should escape only through the lattice point x = a, those
MFPTs (TLR,i) associated with the intervals [a + 1, a + i] where i = 1, 2, 3 . . . , k simply add
up to the MFPT (TLR,0) with the weighting factors µi = i

k
. Now the excess MFPT that adds

up to TLR,0 can be computed as follows. Since TLR,i = TLR,0 + i2+2ai
Dk

= TLR,0 + θi , the MFPT

( �T a) associated with the escape of the protein molecule only through the lattice position x = a

is given by the weighted sum �T a = TLR,0 +
∑k

i=0 µi
i2+2ai

Dk
= TLR,0 +

∑k
i=0 µiθi , where the

weighting factor is µi = i
k

and TLR,0 = a2−x2
0

Dk
and θi is defined as θi = i2+2ai

Dk
. Here, we should

note that the weighting is done only on the terms which contain the jump size variable i since
TLR,0 is a constant and it is independent of the jump size variable i. Substituting the value of
Dk into the sum

∑k
i=0 µiθi one finally obtains the expression for �T a as follows:

�T a = TLR,0 +
k∑

i=0

µiθi = TLR,0 + 2a + f (k), (4)

where f (k) is defined as f (k) = 3k(k+1)

2(2k+1)
.

3. Splitting probabilities and the overall MFPT

Here one should note that �T a is the mean time for which the protein molecule stays in
the interval [0, a − 1] before it gets absorbed at the lattice position x = a. Now we
compute the mean time for which the protein molecule stays in the interval [a + 1, N ]
once it escaped from the interval [0, a − 1]. We should note that from the position
x = a − 1, the protein molecule can jump into the lattice positions x = a + i where
i = 1, 2, . . . , k, without getting absorbed at a. In other words, the initial positions
associated with the interval [a + 1, N ] are x0 = a + 1, a + 2, . . . , a + k. Here the MFPT
associated with the protein molecule to escape from the interval [a + 1, N ] is given as
TRL,x0 = D−1

k

[(
a2 − x2

0

)
+ 2N(x0 − a)

]
. We should note that the initial position x0 falls

in the interval [a + 1, a + i] where i = 1, 2, 3, . . . , k with the probabilities of i
k
. Suppose

if we consider Q number of such trajectories, we can easily conclude that Q i
k

number of
trajectories will end in the interval [a + 1, a + i]. Therefore to compute the overall MFPT

(
←
T a) associated with the escape of the protein molecule from the interval [a + 1, N ] one

needs to sum TRL,x0 over the initial positions x0 = a + 1, a + 2, . . . , a + i, . . . , a + k with
the appropriate weighting factors. Noting the fact that the MFPT (TRL,i) associated with
the escape of the protein molecule from the interval [a + 1, N ] with the initial position at
x0 = a + i as TRL,x0 = D−1

k [a − (a + i)2 + 2N(a + i − a)] and summing over the terms which
contain the jump size variable i with the weighting factors µi = i

k
similar to the derivation of

equation (4), i.e. D−1
k

∑k
i=0 µi[2(N − a)i − i2], one obtains the overall MFPT (

←
T a) associated



1578 R Murugan

with the escape of the protein molecule from the interval [a + 1, N ] starting anywhere from
the interval [0, a − 1], i.e. 0 � x0 � a, as follows:

←
T a = TLR,0 + 2(N − a) − f (k). (5)

Here the term TLR,0 = a2−x2
0

Dk
in equation (5) is added to account for the time that is taken by

the protein molecule to enter into the interval [a + 1, N ] from the interval [0, a − 1] since the
initial position of the protein molecule is still assumed to be situated in the interval [0, a − 1].
Now we consider a total number of R trajectories starting from the interval 0 � x0 � a among
which M number of trajectories get absorbed at x = a from the interval [0, a − 1] and Q
number of trajectories get absorbed at x = a from the interval [a + 1, N ]. It is obvious to
note that though R is a constant in the present context, M and Q are functions of the jump
size k. When k = 1, it is obvious to note that M = R and Q = 0. However, when the
jump size associated with the protein molecule on the DNA lattice is such that k > 1 then
M < R and Q > 0. For an arbitrary value of k one can compute the values of M and Q as
follows. Let us assume that the present position of the protein molecule on the DNA lattice
is x = a − 1. In the next step, the protein molecule can be found anywhere in the interval
(a − 1 − k) � x � (a − 1 + k) with equal probabilities of 1

2k
. Among 2k number of such

possibilities k − 1 number of possibilities will be positioned in the interval [a + 1, N ] and
k + 1 number of possibilities will stay in the interval [0, a]. In other words, the probability
of escape of the protein molecule into the interval [a + 1, N ] without getting absorbed at the
lattice point at x = a is k−1

2k
and obviously the probability of the protein molecule to stay in

the interval [0, a − 1] is 1
2 and the probability to get absorbed at the lattice point x = a is 1

2k
,

i.e. the total probability associated with the protein molecule to escape into the lattice point
x = a from the interval [0, a − 1] is k+1

2k
. From these results one can easily show that the

values of M and Q are as M = R
(

1
2 + 1

2k

)
and Q = R

(
1
2 − 1

2k

)
where �pa = (

1
2 + 1

2k

) = M
R

and
←
pa = (

1
2 − 1

2k

) = Q

R
are the splitting probabilities associated with the entry of the

protein molecule from the intervals [0, a − 1] and [a + 1, N ] into the absorbing point x = a,
respectively. It is obvious to note that when the jump size is k = 1 the splitting probabilities
are given as �pa = 1 and

←
pa = 0. However, when the jump size increases as k → ∞ we can

easily conclude that limk→∞[ �pa = ←
pa] = 1

2 which is independent of the initial position x0 as
well as the position of the absorbing point x = a. Now using these splitting probabilities one
can write the expression for overall MFPT taken by the protein molecule to get absorbed at
the position x = a starting from the interval 0 � x0 < a as follows:

↔
T a = �pa

�T a +
←
pa

←
T a = TLR,0 + N − N

k
+

2a

k
+

3(k + 1)

2(2k + 1)
. (6)

Here we should note that limk→∞
↔
T a = N and in the limit as k → 1 we recover the relation

limk→1
↔
T a ≈ TL,x0 . Let us consider a circular DNA lattice of N bps (e.g. a plasmid) containing

a specific site at the position x = a. The circular lattice is a special form of the linear lattice
where the lattice position x = 0 and the lattice position x = N are tied together. Equations (4)–
(6) are still valid for a circular lattice since the probability flow from the interval [0, a − 1] into
the interval [a + 1, N ] through the lattice point x = 0 is exactly compensated by the probability
flow from the interval [a + 1, N ] into the interval [0, a − 1] through the lattice point x = N .

In fact, the limit for the circular lattice limk→∞
↔
T a = N is consistent with the earlier estimated

value [11]. Here one should note that unlike the case of a linear lattice, equation (1) (and
equation (3) too) can be analytically solved for a circular lattice using periodic boundary
conditions [11].
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Figure 1. Variation of the MFPT as a function of the jump size k, i.e.
↔
T 50 = T (x0 = 0|k). Here

N = 100, x0 = 0 and a = 50 and the jump size k was varied in the range 1 � k � 100. The
MFPT was calculated over 105 trajectories. Here the solid line is the prediction by equation (6).
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Figure 2. Variation of the splitting probabilities (ps, hollow circles) associated with the escape of
the random walker from intervals [0, 49] and [51, 100] into the absorbing point x = 50 as a function

of the jump size k which are in agreement with the predictions (solid lines) of pRL = ←
pa = k−1

2k

and pLR = �pa = k+1
2k

.

4. Random walk simulation results and discussion

To check the validity of equation (6), random walk simulations were carried out. Here the
parameters were N = 100, x0 = 0 and a = 50 and the jump size k was varied in the range
1 � k � 100. Figure 1 shows that the mean number of steps (MFPT in dimensionless form)
was calculated over 105 trajectories as a function of the step size k which fairly agrees with
the prediction by equation (6). Figure 2 shows the splitting probabilities associated with the
random walker to escape into the lattice position x = 50 from the intervals [0, 49] and [51, 100]
as a function of the jump size k which are in agreement with the predictions as

←
pa = k−1

2k
and

�pa = k+1
2k

. Here the limit limk→∞
↔
T a = N indicates that as k → ∞, the MFPT associated

with the escape of the protein molecule at the lattice point x = a is not only independent of
the initial position x = x0 but also independent of the position of the absorbing point x = a
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itself. Suppose, instead of a single point, let us consider a stretch of absorbing points such
that a − δ � x � a + δ. Here the interval δ can be thought to be inversely proportional to the
specificity of the absorbing site whereas the inverse of MFPT can be thought to be inversely
proportional to the affinity of the protein molecule towards the specific site. Therefore, it

is obvious to note that limk→∞
↔
T a,δ = N

2δ+1 which is a straightforward demonstration of
the existence of affinity specificity anti-correlation in DNA–protein interactions [12] even at
higher jump sizes.

5. Conclusions

In this paper, we have derived the expression for the mean first passage time for a random
walk with random step size on a one-dimensional linear lattice with reflecting boundaries at
the ends and an absorbing boundary anywhere inside the lattice. Here we consider a random
walker undergoing an unbiased random jump motion with a random step size of k on a
linear lattice with N number of points where the set of points {0, N} constitutes the reflecting
boundaries and the lattice point a such that 0 < a < N is the only absorbing boundary.

We show that the MFPT
↔
T a associated with the escape of the random walker starting from

the lattice position x0 such that 0 � x0 � a at the time t = 0 only through the point a

is
↔
T a = TLR,0 + N − N

k
+ 2a

k
+ 3(k+1)

2(2k+1)
, where TLR,0 is the MFPT associated with the jump

size of k = 1 from which we obtain the limit limk→∞
↔
T a = N . Unlike

↔
T a this limiting

value is independent of the initial position x0 as well as the absorbing position a associated
with the random walker under consideration. We generalize this result to a circular lattice.
Finally, we discuss the potential applications of these results in the analysis and understanding
of the fundamental processes in molecular biology such as DNA–protein and DNA–probe
interactions.
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